SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis.
نویسندگان
چکیده
Epigenetic reprogramming occurring during reproduction is crucial for both animal and plant development. Histone H3 Lys 4 trimethylation (H3K4me3) is an evolutionarily conserved epigenetic mark of transcriptional active euchromatin. While much has been learned in somatic cells, H3K4me3 deposition and function in gametophyte is poorly studied. Here, we demonstrate that SET DOMAIN GROUP2 (SDG2)-mediated H3K4me3 deposition participates in epigenetic reprogramming during Arabidopsis male gametogenesis. We show that loss of SDG2 barely affects meiosis and cell fate establishment of haploid cells. However, we found that SDG2 is critical for postmeiotic microspore development. Mitotic cell division progression is partly impaired in the loss-of-function sdg2-1 mutant, particularly at the second mitosis setting up the two sperm cells. We demonstrate that SDG2 is involved in promoting chromatin decondensation in the pollen vegetative nucleus, likely through its role in H3K4me3 deposition, which prevents ectopic heterochromatic H3K9me2 speckle formation. Moreover, we found that derepression of the LTR retrotransposon ATLANTYS1 is compromised in the vegetative cell of the sdg2-1 mutant pollen. Consistent with chromatin condensation and compromised transcription activity, pollen germination and pollen tube elongation, representing the key function of the vegetative cell in transporting sperm cells during fertilization, are inhibited in the sdg2-1 mutant. Taken together, we conclude that SDG2-mediated H3K4me3 is an essential epigenetic mark of the gametophyte chromatin landscape, playing critical roles in gamete mitotic cell cycle progression and pollen vegetative cell function during male gametogenesis and beyond.
منابع مشابه
SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development
Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotrop...
متن کاملArabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development.
Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in euchromatin and is in general associated with transcriptional activation in eukaryotes. Although some Arabidopsis thaliana SET DOMAIN GROUP (SDG) genes have been previously shown to be involved in H3K4 methylation, they are unlikely to be responsible for global genome-wide deposition of H3K4me3. Most strikingly, sparse knowledge is cur...
متن کاملThe Arabidopsis transcription factor IIB-related protein BRP4 is involved in the regulation of mitotic cell-cycle progression during male gametogenesis
Male gametogenesis in angiosperms involves two rounds of mitosis that are essential for the generation of two sperm cells to achieve double fertilization, a distinct event in the sexual reproduction of flowering plants. Precise regulation of mitosis during male gametogenesis is critically important for the establishment of the male germline. However, the molecular mechanisms underlying mitotic ...
متن کاملChromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana.
The interdependence of cell cycle control, chromatin remodeling and cell fate determination remains unclear in flowering plants. Pollen development provides an interesting model, as it comprises only two cell types produced by two sequential cell divisions. The first division separates the vegetative cell from the generative cell. The generative cell divides and produces the two sperm cells, tr...
متن کاملSLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis.
The progression of mitotic division cycles and synchronous development between and within the male and female reproductive organs are essential for plant sexual reproduction. Little is known about the genetic control of the progression of mitotic cycles of the haploid genome during gametogenesis in higher plants. Here, we report the phenotypic and molecular characterization of an Arabidopsis th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 174 2 شماره
صفحات -
تاریخ انتشار 2017